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The need to rethink space and time 

 Any such beam of any kind of particles generated at the speed of light by a 
moving observer would be received by a stationary observer at that same speed – 
regardless of how fast the two observers were moving relative to one another. 

How could the old Galilean view of space and time work to explain this? 

Apparently, it couldn’t! We need to change our view of space and time! 

Note: the Lorentz transformations came way before this deeper insight 
of geometry started to take hold. 



A note of history 

The views of space and time which I wish to 

lay before you have sprung from the soil of 

experimental physics, and therein lies their 

strength. They are radical. Henceforth space 

by itself, and time by itself, are doomed to fade 

away into mere shadows, and only a kind of 

union of the two will preserve an independent 

reality. – Hermann Minkowski, 1908 



The line element in spacetime 
Previously, in 3D Euclidian geometry, we learned that dl2 = dx2 + dy2 + dz2 is 
invariant under coordinate transformations. 

Considering space and time together and taking into account that the speed of 
light must be constant in any frame, we find that the new line element to satisfy 
such conditions is  

 ds2 = −𝑐2 d𝑡2 + dx2 + dy2 + dz2 

Verification： 

Let a photon travel along the x direction. Given that we have two observers 
(A&B) with different velocities along the x axis, 
 
For A, the line element is then ds2 = −𝑐2 d𝑡′2 + 𝑐2d𝑡′2 = 0 
For B, the line element is still ds2 = −𝑐2 d𝑡2 + 𝑐2d𝑡2 = 0 
 
This is because both of them see the photon traveling at c ！ 
 
An interesting fact about this is that photons apparently travel along what is 
called null geodesics, the line elements are 0 in any frame！ 



A twist in ideas 

One other interesting property that follows directly by considering the following 
line element 

 ds2 = −𝑐2 d𝑡2 + dx2 + dy2 + dz2 
 

Is that even when we are apparently sitting still, given that some time dt has 
elapsed, then we have already traveled by an interval square of ds2 = −𝑐2 d𝑡2！ 
 

So much for ‘common sense‘ of ‘not moving’！ 

Based on the idea of line elements, we must also be able to derive the findings 
using pure algebra as were first during the development of special relativity. 
 
Namely, we should derive: 
1. The effect of Time Dilation 
2. The effect of FitGerald Contraction (or Lorentz Contraction) 
3. The Lorentz Transforms 



Time Dilation 
Let’s again consider two observers, A&B. To simplify the problem, we only 
consider x-directional motion. 
Let’s have A sit still in some jet moving with const. velocity v in the +x direction 
w.r.t B, then,  
 
For A, she would observe herself only traversing in time, therefore, 

ds2
𝐴 = −𝑐2dt2 

 
As for B, he would observe the interval as 

ds2
𝐵 = −𝑐2dt′2 + 𝑣2dt′2 

 
Assuming intervals are invariant, (we haven’t proven that the invariance of 
intervals gives the correct Lorentz transforms yet) ds2

𝐴 = ds2
𝐵 

 
This then gives 

dt′ =
dt

1 −
𝑣
𝑐

2
≡ 𝛾dt 

 
Which is the time dilation formula. 



FitGerald Contraction 



Some reminders 

Postulates of special relativity: 
 
1. The laws of physics are the same in all inertial frames of reference 
 
2. The speed of light in free space has the same value c in all inertial frames. 
 

On the Minkowski metric: 
(6.41) ds2 = −𝑐2 d𝑡2 + dx2 + dy2 + dz2 



Spacetime diagrams 

Events outside 
these light cones 
are inaccessible 
to you. 

Now 

Future 

Past 

Past light cone 

Future light cone 

Trajectory of a particle 

Any event that has the chance of 
affecting you at this very moment 
lies in your past light cone. 

Any event that you can affect lies 
in your future light cone. 

ds2 < 0 timelike intervals 
ds2 > 0 spacelike intervals 
ds2 = 0 lightlike intervals 



Example 

The Sun right now. 
It’s 8 light minutes away, what 
happens over there right now 
is not going to affect us till 8 
minutes later. 

We are here 
right now. 
Assume that 
we don’t 
move about. 

The Sun’s future 
light cone. 

Our trajectory 
in spacetime. 

Our trajectory intersects with the 
Sun’s future light cone – we see the 
light from the Sun that is emitted 
‘now’ 8 minutes ‘later.’ 

Trajectory of a spaceship 
moving away from Earth 
in direction opposite 
from the Sun. 

The light from 
the Sun finally 
catches up 
with the 
spaceship. 



Different inertial frames 
To illustrate different observers situated in different inertial frames, it is convenient 
to overlay spacetime diagrams as seen by two different observers. It will also form 
the basis of our derivation of Lorentz Transformations using the spacetime diagram. 

x 

t 

In the last few slides we just simply drew the spacetime diagram without discussing 
what exactly we mean by x axis and t axis. 

First, the t axis: 
    As we have shown, when we are not moving, 
then our path corresponds to the t axis. Or in 
general, the t axis is the trajectory of the 
observer which perceives himself as stationary.  
 
Thus, for an observer that we see a moving in the 
+x direction, his t’ axis would be his trajectory. 

t’ 

tanθ = 𝛽 

𝜃 



Different inertial frames 
How about the x axis?  

The x axis basically shows all events that happen at the same time. How then do we 
draw the line that corresponds to events of which in the moving observer’s frame 
are at the same time? 

A more formal way can be found in Schutz but here is a very simple illustration: 

𝜃 

x 

t t’ 

tanθ = 𝛽 

The Sun ‘now’ in our frame. 

Consider the Sun to be at a distance x away in our frame. 

For an observer moving toward it in a spaceship at velocity 𝛽 (=v/c), it would 

only take light the time of 
1

𝑐

𝑋

1+𝛽
 to reach the spaceship. As light always travels 

along the null geodesics, the point which should be registered as “the Sun right 

now” for people on the spaceship therefore must be at a distance 
𝑋

1+𝛽
 as seen 

in our frame. 

X 

𝑋

1 + 𝛽
 

The Sun ‘now’ 
for the 
spaceship. 

x’ 

𝜃 

It is then easy to work out that the angle between the x 
and x’ axes is also 𝜃 by considering the light ray. 

One must take caution that the above arguments 
are done in our frame of reference, people on the 

spaceship won’t think it took time 
1

𝑐

𝑋

1+𝛽
 for the 

light from the Sun to reach them. 



The Lorentz transformations 

t′ = γt − βγx x′ = −βγt + γx 

𝐿 =

𝛾 −βγ 0 0
−βγ 𝛾 0 0

0 0 1 0
0 0 0 1

 



Proper time 
In classical physics, we had defined 𝑣 =

dx

dt
; 𝑎 =

dv

dt
 

 
However, now that time itself isn’t some universal quantity. It becomes necessary to 
discuss what we should use to replace the ‘dt’ term with. 
 
Apparently, it would be not such a good idea to use dt to define some more universal 
‘velocity/acceleration’ which works in 4 dimensions since dt itself is subjected to 
change when we go to other frames of reference. 

x 

t 
Therefore, we define the quantity 
called ‘Proper time dτ’ as :  
Given two timelike events, the 
proper time is the time between the 
two events as measured by a 
stationary observer that passes 
through them. 

event B 

event A 

x’ 

t’ 

dτ 



4-vectors 
The Lorentz Transforms were used for transforming the 4-displacement (i.e. 
coordinates in 4D) in-between different inertial frames of reference. 

Therefore, we can define a class of objects called ‘4-vectors’ written as 𝐴𝜇to have 
the property : 4-vectors follow the same transform as the coordinates transform. 

The most basic 4-vector is of course 𝑥𝜇 = (𝑐𝑡, 𝑥, 𝑦, 𝑧). It obviously transforms from 
one coordinate to another by means of Lorentz Transforms as we’ve found. 

A simple extension would be to define 𝑈𝛼 ≡
dx𝛼

dτ
, which we call the ‘4-velocity’ and 

𝑎𝛼 ≡
dU𝛼

dτ
, which we call ‘4-acceleration’. 

Both of them also transform in-between coordinates like the 4-displacement 𝑥𝜇. 
This is because we have defined dτ, the proper time to be a scalar quantity, i.e. it is a 
quantity that doesn’t change with coodinates. 



Examples 
Defining 𝑈𝛼 ≡

dx𝛼

dτ
 and 𝑎𝛼 ≡

dU𝛼

dτ
, it would be useful to see what they look like in 4-form. 

 
Consider a moving spaceship with const. velocity 
Then, for people on it, they would consider themselves as stationary, meaning that their 
displacement is only d𝑥𝜇 = 𝑐dτ, 0,0,0  
 
 
 
 
Therefore, 𝑈𝛼 = (𝑐, 0,0,0) and 𝑎𝛼 = (0,0,0,0)  
 
 

If we transform 𝑈𝛼 to 𝑈𝛼 by using 𝑈𝛽 = 𝛬𝛽
𝛼𝑈𝛼 , then we find  

 
𝑈𝛼 = (γc, γ𝑣, 0,0) 

 
 
 
Which looks familiar… except with some extra γ s in there. Where are they from? 

𝐿 =

𝛾 +βγ 0 0
+βγ 𝛾 0 0

0 0 1 0
0 0 0 1

 *the bar symbol is for moving frame 



Example (cont.) 

x 

t 

event B 

event A 

x’ 

t’ 

dτ 

Remember that 𝑈𝛼 ≡
dx𝛼

dτ
 but our classical velocity is 𝑣 =

dx

dt
 ! So we need to find the 

relation between dt and dτ. From time-dilation, that would be dt = γdτ 
 

Thus, 
dx𝛼

d𝑡
= 𝑈𝛼 dτ

d𝑡
= (c, 𝑣, 0,0) which is exactly the trajectory that we drew for a 

moving spaceship on the spacetime diagram. 



The magnitude of 4-velocity 
Similar as in 3D case, the magnitude of 4-vectors can be found by 𝑔αβ 𝑈𝛼 𝑈𝛽 = −𝑐2 

 

𝑔αβ =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 is the metric in flat spacetime 

 



Energy-momentum 4-vector 
Another quantity that follows quite straight forwardly from the 4-velocity is 4-
momentum.  

𝑃𝛼 ≡ 𝑚0 𝑈𝛼 ; 𝑃2 = −𝑚0
2 𝑐2 

 
𝑚0 the rest mass of the particle. 
 
Following previous example in which we see a spaceship to have 𝑈𝛼 = (γc, γ𝑣, 0,0),  

𝑃𝛼 = (γ𝑚0𝑐, γ𝑚0𝑣, 0,0) 
 
What is the first term in this vector? 
 

By expanding to first order we see that γ𝑚0𝑐 ≈
1

𝑐
 𝑚0 𝑐2 +

1

2
 𝑚0 𝑣2  which simply is 

the rest mass energy plus the classical kinetic energy! 
 

Therefore, we usually generalize this concept to define 𝑃𝛼 =
𝐸

𝑐
, 𝑃𝑥, 𝑃𝑦 , 𝑃𝑧  

 
Combining with 𝑃2 = −𝑚0

2 𝑐2, we arrive at the equation 𝐸2 = 𝑃2 𝑐2 + 𝑚0
2 𝑐4 



Newton’s Law 
Similar with what we’ve done before, Newton’s Law 𝐹 =

dp

dt
 in 4-form then is :  

 

 𝐹𝜇 =
dP𝜇

dτ
 

 
Or in general,  

𝐹𝜇 = 𝑈𝜇 𝑃𝛼
,𝛼 ? 

 



The Doppler factor 
Just as in classical physics, waves exhibit Doppler shifts when viewed from frames 
with different velocities. 
 
We define the doppler factor δ through 𝑓 = δf0 
 

For relativistic velocities, 𝛿 =
1

𝛾 1−𝛽 cosθ
 

 
Some cases: 
1. Source moving toward observer at v~c   𝛿~2 𝛾 

2. Source receding from observer at v~c  𝛿~
1

2 𝛾
 

3. Sources not approaching nor receding 𝛿 =
1

𝛾
  (time dilation) 

 



Importance in astrophysics 


