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The need to rethink space and time
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Any such beam of any kind of particles generated at the speed of light by a

moving observer would be received by a stationary observer at that same speed -
regardless of how fast the two observers were moving relative to one another.

How could the old Galilean view of space and time work to explain this?

Apparently, it couldn’t! We need to change our view of space and time!

Note: the Lorentz transformations came way before this deeper insight
of geometry started to take hold.



A note of history

The views of space and time which | wish to
lay before you have sprung from the soil of
experimental physics, and therein lies their
strength. They are radical. Henceforth space
by itself, and time by itself, are doomed to fade
away into mere shadows, and only a kind of
union of the two will preserve an independent
reality. — Hermann Minkowski, 1908



The line element in spacetime

Previously, in 3D Euclidian geometry, we learned that dI? = dx? + dy? + dz? is
invariant under coordinate transformations.

Considering space and time together and taking into account that the speed of
light must be constant in any frame, we find that the newline element to satisfy
such conditions is

ds? = —c? dt? + dx? + dy? + dz*

Verification :

Let a photon travel along the x direction. Given that we have two observers
(A&B) with different velocities along the x axis,

For A, the line element is then ds? = —c? dt'? + ¢?dt'? = 0
For B, the line element is still ds? = —c? dt? + c?dt? =0

This is because both of them see the photon traveling at c !

An interesting fact about this is that photons apparently travel along what is
called null geodesics, the line elements are 0 in any frame !



A twist in ideas

One other interesting property that follows directly by considering the following
line element
ds? = —c? dt? + dx? + dy? + dz?

[s that even when we are apparently sitting still, given that some time dt has
elapsed, then we have already traveled by an interval square of ds? = —c? dt? !

So much for ‘common sense’ of ‘not moving’ !

Based on the idea of line elements, we must also be able to derive the findings
using pure algebra as were first during the development of special relativity.

Namely, we should derive:

1. The effect of Time Dilation

2. The effect of FitGerald Contraction (or Lorentz Contraction)
3. The Lorentz Transforms



Time Dilation

Let’s again consider two observers, A&B. To simplify the problem, we only
consider x-directional motion.

Let’s have A sit still in some jet moving with const. velocity v in the +x direction
w.r.t B, then,

For A, she would observe herself only traversing in time, therefore,
ds?, = —c?dt?

As for B, he would observe the interval as
ds?p = —c2dt'? + v2dt'?

Assuming intervals are invariant, (we haven’t proven that the invariance of
intervals gives the correct Lorentz transforms yet) ds?, = ds?p

This then gives
di=s = ydt

Which is the time dilation formula.



FitGerald Contraction

sure for us v’. Seeing that our clocks tick more slowly, but knowing that our speed
is still v/, the people in the other spaceship conclude that in our reference frame, our
spaceship must have traveled only a distance
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in the time interval At that we measure. So, to the other space travelers, it looks
as if our distances are all shorter by a factor of 1/4’. This is called the FitzGerald
contraction, after the Irish physicist George FitzGerald, who proposed this process
in 1889. Of course, from our point of view, our distances have not changed.



Some reminders

Postulates of special relativity:
1. The laws of physics are the same in all inertial frames of reference

2. The speed of light in free space has the same value c in all inertial frames.

On the Minkowski metric: (6.41) ds? = —c? dt2 + dx? + dy? + dz2

1. It works for observers moving at any speed up to c.
2. Equation (6.41) 1s the same for travelers moving at different speeds.
3. It 1s an extension of the Euclidean metric, although definitely not simply four-

dimensional Euclidean.
4. The true fabric of the universe includes both space and time.



Spacetime diagrams

Any event that you can affect lies
in your future light cone.
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Past light;cone
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- Any event that has the chance of

ds® < 0 timelike intervals affecting you at this very moment

ds® > 0 spacelike intervals lies in your past light cone.
ds? = 0 lightlike intervals



Our trajectory
in spacetime
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Different inertial frames

To illustrate different observers situated in different inertial frames, it is convenient
to overlay spacetime diagrams as seen by two different observers. It will also form
the basis of our derivation of Lorentz Transformations using the spacetime diagram.

In the last few slides we just simply drew the spacetime diagram without discussing
what exactly we mean by x axis and t axis.

t)
t : i
A First, the t axis:
As we have shown, when we are not moving,
6 then our path corresponds to the t axis. Or in

general, the t axis is the trajectory of the

tand = f observer which perceives himself as stationary.

Thus, for an observer that we see a moving in the
+x direction, his t’ axis would be his trajectory.




Different inertial frames

How about the x axis?

The x axis basically shows all events that happen at the same time. How then do we
draw the line that corresponds to events of which in the moving observer’s frame
are at the same time?

A more formal way can be found in Schutz but here is a very simple illustration:
tl

Consider the Sun to be at a distance x away in our frame.

For an observer moving toward it in a spaceship at velocity  (=v/c), it would

only take light the time of %ﬁ to reach the spaceship. As light always travels

along the null geodesics, the point which should be registered as “the Sun right

tanf =

» - . X
now” for people on the spaceship therefore must be at a distance Tip asseen

in our frame.
“~The Sun ‘now’
for the
spad&s\hip.
N\

X Itis then easy to work out that the angle between the x
and x’ axes is also 6 by considering the light ray.

One must take caution that the above arguments
are done in our frame of reference, people on the
b I ! ; L] ! 1 X
9 > X spaceship won’t think it took time 1 for the
The Sun ‘now” in our frame. light from the Sun to reach them.



The Lorentz transformations
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Proper time

In classical physics, we had defined v = %; a= %

However, now that time itself isn't some universal quantity. It becomes necessary to
discuss what we should use to replace the ‘dt’ term with.

Apparently, it would be not such a good idea to use dt to define some more universal
‘velocity/acceleration’ which works in 4 dimensions since dt itself is subjected to
change when we go to other frames of reference.

t A t’
Therefore, we define the quantity

called ‘Proper time dt’ as:
Given two timelike events, the event B
proper time is the time between the
two events as measured by a
stationary observer that passes
through them. X

event A

\ 4




4-vectors

The Lorentz Transforms were used for transforming the 4-displacement (i.e.
coordinates in 4D) in-between different inertial frames of reference.

Therefore, we can define a class of objects called ‘4-vectors’ written as A#to have
the property : 4-vectors follow the same transform as the coordinates transform.

The most basic 4-vector is of course x* = (ct, x, y, z). It obviously transforms from
one coordinate to another by means of Lorentz Transforms as we’ve found.

a

A simple extension would be to define U% = ox

== which we call the ‘4-velocity’ and

a

U v ( : )
s which we call ‘4-acceleration’.

a

Both of them also transform in-between coordinates like the 4-displacement x*.
This is because we have defined dt, the proper time to be a scalar quantity, i.e. itis a
quantity that doesn’t change with coodinates.



Examples
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Defining U% = ddir and a% = %, it would be useful to see what they look like in 4-form.
Consider a moving spaceship with const. velocity
Then, for people on it, they would consider themselves as stationary, meaning that their

displacement is only dx* = (cdr, 0,0,0)

y +tBy 0 0
*the bar symbol is for moving frame L= +([)3y g (1) 8
0 0 0 1

Therefore, U* = (c,0,0,0) and a® = (0,0,0,0)

If we transform U® to U* by using U? = AP ,U%, then we find

% = (yc,yv,0,0)

Which looks familiar... except with some extra y s in there. Where are they from?



Example (cont.)

dx% . res d :
Remember that U% = % but our classical velocity is v = d—)t( I So we need to find the

relation between dt and dt. From time-dilation, that would be dt = ydt

Thus, ddit =ilJ* % = (¢, v,0,0) which is exactly the trajectory that we drew for a

moving spaceship on the spacetime diagram.

t A t

event B
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event A



Similar as in 3D case, the magnitude of 4-vectors can be found by g,g UeUB = —¢
-1 0 0 O
Jop = 8 (1) (1) 8 is the metric in flat spacetime
0 0 0 1

The magnitude of 4-velocity

2



Energy-momentum 4-vector

Another quantity that follows quite straight forwardly from the 4-velocity is 4-
momentum.
@ = man > Pz = _mOZCZ

mg the rest mass of the particle.

Following previous example in which we see a spaceship to have U% = (yc,yv, 0,0),
P% = (ymgyc,ymqyv, 0,0)

What is the first term in this vector?

By expanding to first order we see that ymyc = % (moc2 i %movz) which simply is

the rest mass energy plus the classical kinetic energy!

Therefore, we usually generalize this concept to define P% = (g, P*, PY, PZ)

Combining with P? = —m,2c?, we arrive at the equation E? = P?c? + my?c*



Newton's Law

EM . ) ‘ dp . :
Similar with what we’ve done before, Newton’s Law F = d—lz in 4-form then is :

dp#
pREE
2 dt
Or in general,
Ef= URPE R



The Doppler factor

Just as in classical physics, waves exhibit Doppler shifts when viewed from frames
with different velocities.

We define the doppler factor § through f = 6f,

1

For relativistic velocities, § =

y(1—Bcos0)
Some cases:
1. Source moving toward observer at v~c 0~2y
: 1
2. Source receding from observer at v~c o~ =
3. Sources not approaching nor receding 6 ==  (time dilation)

- Velocity v= 0.00c




Importance in astrophysics

The tremendous enhancement in the Doppler effect for relativistic motion is
called “Doppler boosting” or “Doppler beaming”. It affects many physical quan-
tities (besides just frequency of the emitted light or radio waves) that are measured
when astronomers observe relativistic jet flow. Some, such as brightness, depend on
the Doppler factor to a high power like 3 or 4. Fig. 6.6 shows a plot of different
powers of the Doppler factor as a function of the jet viewing angle € for v = 10.
The Doppler factor does not drop formally to a value of 1 until it reaches an angle

given by cosf = [(y —1)/(v + 1)]”2 (or § = 0.440 radians for v = 10). How-

ever, we see from the figure that the ef!
an exponent of n = 3 or 4 1s only abot

0,

is the effective “beaming angle”. For o

very near the speed of light with respe &

are moving at an angle 6 > 6, to our i

i L "
0.2

i
0.4

L "
0.6

" i
1.2

L
1.4




